稀土纳米材料的应用及生产技术
稀土元素本身具有丰富的电子结构,表现出许多光、电、磁的特性。稀土纳米化后,表现出许多特性,如小尺寸效应、高比表面效应、量子效应、极强的光、电、磁性质、超导性、高化学活性等,能大大提高材料的性能和功能,开发出许多新材料。在光学材料、发光材料 、晶体材料、磁性材料、电池材料、电子陶瓷、工程陶瓷、催化剂等高科技领域,将发挥重要的作用。?
一、目前开发研究和应用的领域
1.稀土发光材料:稀土纳米荧光粉(彩电粉、灯粉),发光效率提高,将大大减少稀土用量。主要使用y2o3、eu2o3、tb4o7、ceo2、gd2o3。高清晰度彩色电视的候选新材料。?
2.纳米超导材料:使用y2o3制备的ybco超导体,特别薄膜材料,性能稳定,强度高,易加工,接近实用阶段,前景广阔。?
3.稀土纳米磁性材料:用于磁存储器、磁流体、巨磁阻等,性能大大提高,使器件变得高性能小型化。如氧化物巨磁电阻靶材(remno3等)。?
4.稀土高性能陶瓷:使用超细或纳米级的y2o3、la2o3、nd2o3、sm2o3等制备的电子陶瓷(电子传感器、ptc材料、微波材料、电容器、热敏电阻等),电性能、热性能、稳定性得到许多改善,是电子材料升级的重要方面。如纳米y2o3和zro2在较低温度烧结的陶瓷,具有很强的强度和韧性,用于轴承、刀具等耐磨器件;用纳米nd2o3、sm2o3等制作的多层电容、微波器件,性能大大提高。?
5.稀土纳米催化剂:在许多化学反应中,使用稀土催化剂,若使用稀土纳米催化剂,催化活性、催化效率将大幅提高。现用的ceo2纳米粉在汽车尾气净化器上,具有活性高、价格低、寿命长的优点,并代替了大部分贵金属,每年用量数千吨。?
6.稀土紫外线吸收剂:纳米ceo2粉对紫外线的吸收极强,用于防晒化妆品,防晒纤维,汽车玻璃等。?
7.稀土精密抛光:ceo2对玻璃等有较好抛光作用。纳米ceo2则有较高的抛光精密度,已用于液晶显示、硅单晶片、玻璃存储等。总之,稀土纳米材料应用才刚刚开始,而且集中在高科技新材料领域,附加值高,应用面广,潜力巨大,商业前景十分看好。?
二、制备技术
?目前纳米材料不论是生产还是应用,都引起各国的重视。我国的纳米技术不断取得进步,在纳米级sio2、tio2、al2o3、zno2、fe2o3等粉体材料中,已经成功的进行工 业化生产或试生产,但现有的生产工艺,生产成本很高是其致命的弱点,将影响纳米材料推广应用,因此要不断改进。?
由于稀土元素特殊的电子结构及较大的原子半径,其化学性质与其它元素有很大不同,因此 ,稀土纳米氧化物的制备方法和后处理技术上,与其它元素也有所不同。主要研究的方法有 :?
1.沉淀法:包括草酸沉淀、碳酸沉淀,氢氧化物沉淀,均相沉淀、络合沉淀等。该方法最大的特点就是:溶液成核快,易控制,设备简单,可制得高纯度的产品。但难过滤,易团聚。?
2.水热法:在高温高压的条件下,加快和强化离子的水解反应,并形成分散的纳米晶核。该方法能得到分散均匀、粒度分布狭窄的纳米粉,但要求高温高压设备,设备昂贵,操作不安全。?
3.凝胶法:是制备无机材料的重要方法,在无机合成中占有相当的地位。在低温下,有机金属化合物或有机络合物,通过聚合或水解等反应,形成溶胶,一定条件下形成凝胶,进一步热处理,可得比表面较大、分散较好的超微纳米粉。该方法可在温和条件下进行,得到的 粉体比表面大、分散性好,但反应时间长,需要数日才能完成,难于达到工业化的要求。?
4.固相法:通过固体化合物或中间固相反应,进行高温分解。如硝酸稀土与草酸,固相混合球磨,形成稀土草酸盐的中间体,然后高温分解,得到超细粉。该方法反应效率高,设备简单,操作容易,但所得粉体形态不规则,均匀性差。?
这些方法不是唯一的,也不一定完全适用于工业化。还有许多制备方法,如有机微乳法、醇盐水解法等。?
三、工业化开发进展
工业化生产往往不是采用单一的某种方法,而是取长补短,几种方法复合,这样才能达到商业化所要求的产品质量高,成本低,过程安全高效。广东惠州瑞尔化学科技有限公司,近期开发稀土纳米材料取得了工业化进展。经过多种方法的探索和无数次的试验,找到了比较适合工业化生产的方法-微波凝胶法,该技术最大优点是:将原来约10天的凝胶反应,缩短到1天,这样生产效率提高了10倍,成本大大降低,而且产品质量好,比表面大,经用户试用反应良好,价格比美国、日本产品的低30%,非常具有国际竞争力,达到国际先进水平。?
最近用沉淀法进行工业试验,主要是用氨水和碳酸氨进行沉淀,并用有机溶剂脱水和作 表面处理,该方法工艺简单,成本低,但产品质量欠佳,仍有部分团聚,有待进一步改进和提高。?
我国是稀土资源大国,稀土纳米材料的开发应用,开辟了稀土资源有效利用的新途径,扩展 了稀土的应用范围,促进了新功能材料的发展,增加了高附加值产品出口,提高了创汇能力 ,对把资源优势变为经济优势有重要的现实意义。